Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design
نویسندگان
چکیده
The paper presents a differential evolution (DE)-based hyper-heuristic algorithm suitable for the optimization of mixed-integer non-linear programming (MINLP) problems. The hyper-heuristic framework includes self-adaptive parameters, an ε-constrained method for handling constraints, and 18 DE variants as low-level heuristics. Using the proposed approach, we solved a set of classical test problems on process synthesis and design and compared the results with those of several state-of-the-art evolutionary algorithms. To verify the consistency of the proposed approach, the above-mentioned comparison was made with respect to the percentage of convergences to the global optimum (NRC) and the average number of objective function evaluations (NFE) over several trials. Thus, we found that the proposed methodology significantly improves performance in terms of NRC and NFE.
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملAdaptive Operator Selection at the Hyper-level
Whenever a new problem needs to be tackled, one needs to decide which of the many existing metaheuristics would be the most adequate one; but it is very difficult to know their performance a priori. And then, when a metaheuristic is chosen, there are still its parameters that need to be set by the user. This parameter setting is usually very problem-dependent, significantly affecting their perf...
متن کاملEvolution Hyper - heuristic for Combinatorial Optimization problems
Designing generic problem solvers that perform well across a diverse set of problems is a challenging task. In this work, we propose a hyper-heuristic framework to automatically generate an effective and generic solution method by utilizing grammatical evolution. In the proposed framework, grammatical evolution is used as an online solver builder, which takes several heuristic components (e.g. ...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computación y Sistemas
دوره 20 شماره
صفحات -
تاریخ انتشار 2016